Войти
Портал об устройстве канализации и водосточных труб
  • Душевный мужчин modules php name
  • Побочные эффекты от употребления включают
  • Самый большой бодибилдер — Грег Ковач: биография, интересные факты и причина смерти Грег Ковач в профессиональных рейтингах
  • Перуанская мака — что это такое
  • Февральская революция: кратко
  • Вся правда о шоколадных десертах — как правильно выбрать какао Чем заменить шоколад в выпечке
  • Сфера, вписанная в правильную треугольную призму. Многогранники, описанные около сферы Многогранник называется описанным около сферы, если плоскости всех его граней касаются сферы

    Сфера, вписанная в правильную треугольную призму. Многогранники, описанные около сферы Многогранник называется описанным около сферы, если плоскости всех его граней касаются сферы

    Многогранники, описанные около сферы Многогранник называется описанным около сферы, если плоскости всех его граней касаются сферы. Сама сфера называется вписанной в многогранник. Теорема. В призму можно вписать сферу тогда и только тогда, когда в ее основание можно вписать окружность, и высота призмы равна диаметру этой окружности. Теорема. В любую треугольную пирамиду можно вписать сферу, и притом только одну.






    Упражнение 1 Сотрите квадрат и нарисуйте два параллелограмма, изображающих верхнюю и нижнюю грани куба. Соедините их вершины отрезками. Получите изображение сферы, вписанной в куб. Изобразите сферу, вписанную в куб, как на предыдущем слайде. Для этого изобразите эллипс вписанный в параллелограмм, полученные сжатием окружности и квадрата в 4 раза. Отметьте полюса сферы и точки касания эллипса и параллелограмма.
























    Упражнение 1 Сфера вписана в прямую четырехугольную призму, в основании которой ромб со стороной 1 и острым углом 60 о. Найдите радиус сферы и высоту призмы. Решение. Радиус сферы равен половине высоты DG основания, т.е. Высота призмы равна диаметру сферы, т.е.






    Упражнение 4 Сфера вписана в прямую четырехугольную призму, в основании которой четырехугольник, периметра 4 и площади 2. Найдите радиус r вписанной сферы. Решение. Заметим, что радиус сферы равен радиусу окружности, вписанной в основание призмы. Воспользуемся тем, что радиус окружности, вписанной в многоугольник, равен площади этого многоугольника делёной на его полупериметр. Получим,














    Упражнение 3 Найдите радиус сферы, вписанной в правильную треугольную пирамиду, сторона основания которой равна 2, и двугранные углы при основании равны 60 о. Решение. Воспользуемся тем, что центр вписанной сферы является точкой пересечения биссектральных плоскостей двугранных углов при основании пирамиды. Для радиуса сферы OE имеет место равенство Следовательно,


    Упражнение 4 Найдите радиус сферы, вписанной в правильную треугольную пирамиду, боковые ребра которой равны 1, и плоские углы при вершине равны 90 о. Ответ: Решение. В тетраэдре SABC имеем: SD = DE = SE = Из подобия треугольников SOF и SDE получаем уравнение решая которое, находим




    Упражнение 1 Найдите радиус сферы, вписанной в правильную четырехугольную пирамиду, все ребра которой равны 1. Воспользуемся тем, что для радиуса r окружности, вписанной в треугольник, имеет место формула: r = S/p, где S – площадь, p – полупериметр треугольника. В нашем случае S = p = Решение. Радиус сферы равен радиусу окружности, вписанной в треугольник SEF, в котором SE = SF = EF=1, SG = Следовательно,


    Упражнение 2 Найдите радиус сферы, вписанной в правильную четырехугольную пирамиду, сторона основания которой равна 1, а боковое ребро - 2. Воспользуемся тем, что для радиуса r окружности, вписанной в треугольник, имеет место формула: r = S/p, где S – площадь, p – полупериметр треугольника. В нашем случае S = p = Решение. Радиус сферы равен радиусу окружности, вписанной в треугольник SEF, в котором SE = SF = EF=1, SG = Следовательно,


    Упражнение 3 Найдите радиус сферы, вписанной в правильную четырехугольную пирамиду, сторона основания которой равна 2, и двугранные углы при основании равны 60 о. Решение. Воспользуемся тем, что центр вписанной сферы является точкой пересечения биссектральных плоскостей двугранных углов при основании пирамиды. Для радиуса сферы OG имеет место равенство Следовательно,


    Упражнение 4 Единичная сфера вписана в правильную четырехугольную пирамиду, сторона основания которой равна 4. Найдите высоту пирамиды. Воспользуемся тем, что для радиуса r окружности, вписанной в треугольник, имеет место формула: r = S/p, где S – площадь, p – полупериметр треугольника. В нашем случае S = 2h, p = Решение. Обозначим высоту SG пирамиды h. Радиус сферы равен радиусу окружности, вписанной в треугольник SEF, в котором SE = SF = EF=4. Следовательно, имеем равенство из которого находим




    Упражнение 1 Найдите радиус сферы, вписанной в правильную шестиугольную пирамиду, у которой ребра основания равны 1, а боковые ребра - 2. Воспользуемся тем, что для радиуса r окружности, вписанной в треугольник, имеет место формула: r = S/p, где S – площадь, p – полупериметр треугольника. В нашем случае S = p = Следовательно, Решение. Радиус сферы равен радиусу окружности, вписанной в треугольник SPQ, в котором SP = SQ = PQ= SH =


    Упражнение 2 Найдите радиус сферы, вписанной в правильную шестиугольную пирамиду, у которой ребра основания равны 1, и двугранные углы при основании равны 60 о. Решение. Воспользуемся тем, что центр вписанной сферы является точкой пересечения биссектральных плоскостей двугранных углов при основании пирамиды. Для радиуса сферы OH имеет место равенство Следовательно,
    Упражнение Найдите радиус сферы, вписанной в единичный октаэдр. Ответ: Решение. Радиус сферы равен радиусу окружности, вписанной в ромб SESF, в котором SE = SF = EF=1, SO = Тогда высота ромба, опущенная из вершины E, будет равна Искомый радиус равен половине высоты, и равен O




    Упражнение Найдите радиус сферы, вписанной в единичный икосаэдр. Решение. Воспользуемся тем, что радиус OA описанной сферы равен а радиус AQ окружности, описанной около равностороннего треугольника со стороной 1, равен По теореме Пифагора, примененной к прямоугольному треугольнику OAQ, получим Упражнение Найдите радиус сферы, вписанной в единичный додекаэдр. Решение. Воспользуемся тем, что радиус OF описанной сферы равен а радиус FQ окружности, описанной около равностороннего пятиугольника со стороной 1, равен По теореме Пифагора, примененной к прямоугольному треугольнику OFQ, получим


    Упражнение 1 Можно вписать сферу в усеченный тетраэдр? Решение. Заметим, что центр O сферы, вписанной в усеченный тетраэдр должен совпадать с центром сферы, вписанной в тетраэдр, который совпадает с центром сферы, полувписанной в усеченный тетраэдр. Расстояния d 1, d 2 от точки O до шестиугольной и треугольной граней вычисляются по теореме Пифагора: где R – радиус полувписанной сферы, r 1, r 2 – радиусы окружностей, вписанных в шестиугольник и треугольник, соответственно. Поскольку r 1 > r 2, то d 1 r 2, то d 1



    «Сфера политики» - Отношения социальных субъектов по поводу государственной власти. Научно-теоретический. Процесс взаимодействия политики с экономикой. Вместе с государством. Регулирование общественных отношений обусловленность социальными интересами. Процесс взаимодействия политики с моралью. Силу государства, убеждение, стимулирование.

    «Призма геометрия» - Дана прямая четырехугольная призма ABCDA1B1C1D1. Евклид, вероятно, считал делом практических руководств по геометрии. Прямая призма - призма, у которой боковое ребро перпендикулярно основанию. Призма в геометрии. По свойству 2 объемов V=V1+V2, то есть V=SABD h+SBDC h=(SABD+SBDC) h. Итак треугольники A1B1C1 и ABC равны по трем сторонам.

    «Объём призмы» - Как найти объем прямой призмы? Объем исходной призмы равен произведению S · h. Основные шаги при доказательстве теоремы прямой призмы? Площадь S основания исходной призмы. Проведение высоты треугольника ABC. Задача. Прямая призма. Цели урока. Понятие призмы. Объем прямой призмы. Решение задачи. Призму можно разбить на прямые треугольные призмы с высотой h.

    «Поверхность сферы» - Марс. Мяч – шар? Шар и сфера. Земля. Энциклопедия. Мы болеем за нашу школьную команду по бейсболу. Венера. Уран. Шар ли на рисунке? Немного из истории. Атмосфера. Решил я провести небольшое исследование……. Сатурн. Ты готов ответить на вопросы?

    Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.

    Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.

    Определения.

    1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.

    2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.

    3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).

    (Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).

    4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.

    (Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).

    Общие замечания о положении центра шара.

    1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.

    2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.

    Комбинация шара с призмой.

    1. Шар, вписанный в прямую призму.

    Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.

    Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.

    Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.

    2. Шар, описанный около призмы.

    Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.

    Следствие 1 . Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.

    Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.

    Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).

    Комбинация шара с пирамидой.

    1. Шар, описанный около пирамиды.

    Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.

    Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.

    Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.

    Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.

    2. Шар, вписанный в пирамиду.

    Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.

    Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.

    Следствие 2. В правильную пирамиду можно вписать шар.

    Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.

    Комбинация шара с усеченной пирамидой.

    1. Шар, описанный около правильной усеченной пирамиды.

    Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)

    2. Шар, вписанный в правильную усеченную пирамиду.

    Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.

    На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).

    Комбинация шара с круглыми телами.

    Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.

    Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.

    Теорема 9. В любой конус (прямой круговой) можно вписать шар.

    Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.

    Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.

    Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:

    1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = a3).

    2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)

    3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)

    4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)

    5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)

    6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)

    7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)

    8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)

    9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)

    10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)

    11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)

    12. Основание пирамиды – равнобедренная трапеция.Ортогональная проекция вершины пирамиды на плоскость основания – точка, расположенная вне трапеции. Можно ли около такой трапеции описать сферу? (Да, можно. То что ортогональная проекция вершины пирамиды расположена вне её основания, не имеет значения. Важно, что в основании пирамиды лежит равнобедренная трапеция – многоугольник, около которого можно описать окружность)

    13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)

    14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)

    15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)

    16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)

    17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)

    18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)

    19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)

    20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)

    21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)

    22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)

    23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)

    24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)

    25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)

    26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)

    27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)

    Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.