Войти
Портал об устройстве канализации и водосточных труб
  • русский театр русский театр (театр россии) прошел иной путь формирования и развития, чем театр европейский, восточный или
  • Биотехнологии Презентация на тему развитие биотехнологий
  • Оползни, сели, обвалы, лавины презентация к уроку по обж (класс) на тему Поражающие факторы обва
  • Толкование на «Послание к Галатам»
  • Что означает знак, когда на линии сердца вилка
  • Знаки на ладони- значение знаков на руке
  • Презентация на тему "биотехнологии". Биотехнологии Презентация на тему развитие биотехнологий

    Презентация на тему

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Биотехнология, ее достижения и перспективы развития. Этические аспекты некоторых достижений в биотехнологии. Клонирование животных

    БИОТЕХНОЛОГИЯ. химическая бионика. Бионика - это использование секретов живой природы с целью создания более совершенных технических устройств. В широком смысле биотехнология - это использование живых организмов и биологических процессов в производстве, т.е. производство необходимых для человека веществ с использованием достижений микробиологии, биохимии и технологии, в которых используются бактерии, микроорганизмы и клетки различных тканей.

    Микроб, этот гадкий утенок первых лет эпидемиологии, благодаря успехам науки и техники, достижениям человеческого гения, превратился в прекрасного лебедя генетической инженерии современной биотехнологии и индустрии живых клеток. Б.Я. Нейман

    Микроорганизмы характеризуются большой скоростью размножения, часто путем простого деления пополам. Например: бактериальная клетка в благоприятных условиях делится пополам через каждые 20-25 минут. 2. Разнообразны по физиологическим и биохимическим свойствам, некоторые живут в условиях, не пригодных для жизни других. Например: выдерживают высокий уровень радиации, высокие (75–105°С) и низкие (-80°С) температуры, концентрацию хлорида натрия до 30%, отсутствие кислорода (анаэробы).

    3. Очень продуктивны. Например: 1 корова массой 500 кг вырабатывает в сутки 0,5 кг белка. 500 кг растений – 5 кг белка. 500 кг дрожжей – 50 т белка (а это масса 10 слонов!) ! При определенных условиях микробная клетка способна за равное время продуцировать в 100 000 раз больше белка, чем животная клетка. При этом использует дешевые вещества (крахмальные растворы, сточные воды). 4. Чрезвычайная приспособляемость, т.е. их можно быстро и легко селекционировать

    Например: чтобы получить новый сорт хлебного злака, необходимы десятилетия или даже столетия, а у кистевидной плесени всего за 30 лет удалось в 1000 раз повысить продуктивность. 5. Микроорганизмы повсеместно распространены в природе, играют важную роль в круговороте веществ (благодаря большому разнообразию микроорганизмы бывают автотрофами, хемоавтотрофами и гетеротрофами, в трофических цепях часто являются редуцентами).

    Использование микроорганизмов. Пищевая промышленность. Химическая промышленность. Металлургия. Сельское хозяйство. Охрана природы Хлебопечение, Виноделие,

    Сыроварение, получение молочно-кислых продуктов, уксуса, кормовых белков. Производство антибиотиков, витаминов, гормонов, аминокислот, синтетических вакцин, получение метана как топлива. Выщелачивание некоторых металлов из бедных руд (медь, уран, золото, серебро). Производство силоса и азотфиксаторов, биологическая защита растений. Очистка сточных вод. Ликвидация разлива нефти.

    Биотехнология – производство необходимых человеку продуктов и материалов с помощью биологических объектов и процессов. (Появление термина “биотехнология” в 1970-х гг. связано с успехами молекулярной генетики.)

    Методы биотехнологии: 1) Клеточная инженери я – метод получения новых клеток и тканей на искусственной питательной среде. В основе метода лежит высокая способность живых культур к регенерации. 1-ый метод – Культивирование. Метод основан на способности клеток растений и животных делиться при помещении их в питательную среду, где содержатся все необходимые для жизнедеятельности вещества.. Например: Культура клеток женьшеня нарабатывает ценные для человека вещества, выращенные клетки кожи используют для лечения ожогов.

    2-ой метод – Реконструкция (метод “ in vitro ”– в пробирке). Помещая клетки растений в определенные питательные среды, размножают редкие и ценные виды. Это позволяет создавать безвирусные культуры редких растений. 3-ий метод – Клонирование. Метод пересадки ядер соматических клеток в яйцеклетки позволяет получать генетической копии одного организма.

    2) Хромосомная инженерия 1-ый метод– Метод гаплоидов. Метод основан на выращивании гаплоидных растений с последующим удвоением хромосом. Всего за 2–3 года получают полностью гомозиготные растения вместо 6–8 лет инбридинга. 2-ой метод-Метод полиплоидов. Получение полиплоидных растений в результате кратного увеличения хромосом 3-ий метод -замена некоторых хромосом в геноме одного организма на сестринские из генома другого организма этого же или близкого вида.

    3) Генная инженерия – основана на выделении (или на искусственном синтезе) нужного вида из генома одного организма и введении его в геном другого организма, зачастую далекому по происхождению (впервые процесс был проведен в 1969 году). Например: Излюбленный объект генных инженеров – кишечная палочка. С помощью нее получают соматотропин (гормон роста), интерферон (белок, который культивирование помогает справиться со многими вирусными инфекциями), инсулин (гормон поджелудочной железы) Растения и животные, геном которых изменен с помощью подобных операций, называют трансгенными.

    В 1983 в США, Бельгии и Германии впервые получены трансгенные растения. Сейчас – 17 стран выращивают трансгенные растения, которые имеют необходимые для человека сроки созревания, их плоды обладают способностью к длительному хранению и не теряют товарный вид при транспортировке.

    Уже получены трансгенные свиньи, овцы и кролики в геном которых были введены гены различного происхождения – вирусов, микроорганизмов, грибов, человека; получены трансгенные растения с генами животных, микроорганизмов, вирусов и искусственно созданными генами. Большая часть трансгенных культур выращивается в США.

    Например: Китай – табак, рис, соя, томаты, быстрорастущие сорта, которые могут расти на засоленных почвах. США – хлопчатник, кукуруза, картофель – устойчивы к вредителям, так как эти растения вырабатывают энтомоксин

    Генетики работают над получением растений-вакцин, т.е. растений содержащих готовые антитела на различные заболевания или вещества, препятствующие развитию болезни. Например: картофель вырабатывает антитела холеры (Россия). Красный помидор содержит в 3,5 раза больше ликонина (красный пигмент). Ликонин, обладая окислительными свойствами, снижает вероятность раковых заболеваний (США).

    IV. Этические аспекты развития некоторых исследований в биотехнологии. – Клонирование человека. – Создание генетически модифицированных штаммов вирусов и бактерий. Клони́рование челове́ка - прогнозируемая методология, заключающаяся в создании эмбриона и последующем выращивании из эмбриона людей, имеющих генотип того или иного индивида, ныне существующего или ранее существовавшего.

    Выполнила: преподаватель химии, биологии ГБПОУ ЧТПрИС Дубровина Л.В.


    1 слайд

    2 слайд

    3 слайд

    Биотехнология - это не просто новомодное, броское название одной из древнейших сфер деятельности человека; так могут думать одни только скептики. Само появление этого термина в нашем словаре глубоко символично. Оно отражает широко распространенное, хотя и не общепринятое мнение: считается, что применение биологических материалов и принципов в ближайшие десять - пятьдесят лет радикально изменит многие отрасли промышленности и само человеческое общество.

    4 слайд

    Биотехнология - это интеграция естественных и инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. В результате стремительного прогресса разных составных частей физико-химической биологии, возникло новое направление в науке и производстве, получившее наименование биотехнологии. Это направление сформировалось за последние два десятка лет и уже сейчас получило мощное развитие.

    5 слайд

    6 слайд

    Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

    7 слайд

    Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

    8 слайд

    Первый антибиотик - пенициллин - был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

    9 слайд

    Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

    10 слайд

    11 слайд

    Микробиологический синтез Развитие микробиологической промышленности, выпускающей ценные продукты биосинтеза, позволило накопить очень важный опыт конструирования, производства и эксплуатации принципиально нового промышленного оборудования. Современное микробиологическое производство - производство очень высокой культуры. Технология его очень сложна и специфична, обслуживание аппаратуры требует овладения специальными навыками, ведь всё производство работает только в условиях строжайшей стерильности: стоит попасть в ферментатор лишь одной клетке микроорганизма другого вида, как всё производство может остановиться - «чужак» размножится и начнёт синтезировать совсем не то, что нужно человеку.

    12 слайд

    13 слайд

    В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны (вещества, с помощью которых можно управлять поведением насекомых), органические кислоты, кормовые белки и другие. Технология производства этих веществ хорошо отработана, получение их микробиологическим путём экономически выгодно.

    14 слайд

    15 слайд

    Иммобилизованные ферменты находят применение и в медицине. Так, в нашей стране для лечения сердечно-сосудистых заболеваний разработан препарат иммобилизованной стрептокиназы (препарат получил название «стрептодеказа»). Этот препарат можно вводить в сосуды для растворения образовавшихся в них тромбов. Растворимая в воде полисахаридная матрица (к классу полисахаридов относятся, как известно, крахмал и целлюлоза, близким к ним по строению был и подобранный полимерный носитель), к которой химически «привязана» стрептокиназа, значительно повышает устойчивость фермента, снижает его токсичность и аллергическое действие и не влияет на активность, способность фермента растворять тромбы.

    16 слайд

    17 слайд

    18 слайд

    Плазмиды Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью небольших кольцеобразных молекул ДНК - плазмид, присутствующих в бактериальных клетках. В плазмиды «вклеивают» необходимые гены, а затем такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают такие плазмиды целиком. После этого плазмида начинает работать в клетке как ген, изготавливая в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.

    19 слайд

    20 слайд

    Итак, какова же структура биотехнологии? Учитывая, что биотехнология активно развивается и структура её окончательно не определилась, можно говорить лишь о тех видах биотехнологии, которые существуют в настоящее время. Это клеточная биотехнология - прикладная микробиология, культуры растительных и животных клеток (об этом шла речь, когда мы говорили о микробиологической промышленности, о возможностях клеточных культур, о химическом мутагенезе). Это генетическая биотехнология и молекулярная биотехнология (они обеспечивают «индустрию ДНК»). И наконец, это моделирование сложных биологических процессов и систем, включающее инженерную энзимологию (об этом мы говорили, когда рассказывали об иммобилизованных ферментах).

    21 слайд

    Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации. Ведь как бы ни дифференцировалась биология, какие бы новые научные направления не возникали, объектом их исследования всегда будут живые организмы, представляющие собой совокупность материальных структур и разнообразнейших процессов составляющих физическое, химическое и биологическое единство. И этим - самой природой живого - предопределяется необходимость комплексного изучения живых организмов. Поэтому естественно и закономерно что биотехнология возникла в результате прогресса комплексного направления - физико-химической биологии и развивается одновременно и параллельно с этим направлением.

    22 слайд

    В заключение надо отметить ещё одно важное обстоятельство, которое отличает биотехнологию от других направлений науки и производства. Она исходно ориентирована на проблемы, которые тревожат современное человечество: производство продуктов питания (прежде всего белка), сохранение энергетического равновесия в природе (отход от ориентировки на использование невосполнимых ресурсов в пользу ресурсов восполнимых), охрана окружающей среды (биотехнология - «чистое» производство, требующее, правда, больших затрат воды). Таким образом, биотехнология - закономерный результат развития человечества, признак достижения им важного, можно сказать поворотного, этапа развития.

    ОТКРЫТИЯ В ОБЛАСТИ БИОЛОГИИ В ЭПОХУ НТР

    Введение
    Современное состояние биотехнологии
    Биотехнология и её роль в практической деятельности человека
    Биотехнологии в растениеводстве

    Метод культуры тканей

    Клонирование

    Новые открытия в области медицины

    Генная инженерия

    Трансгенные продукты: за и против
    Генно-модифицированные продукты


    Последствия развития биотехнологии в эпоху НТР

    Введение

    Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с необходимыми человеку свойствами. Отдельные биотехнологические процессы (хлебопечение, виноделие) известны с древних времен. Но наибольших успехов биотехнология достигла во второй половине XX века и приобретает всё большее значение для человеческой цивилизации.

    Современное состояние биотехнологии

    С древних времен известны отдельные биотехнологические процессы, используемые в сферах практической деятельности человека. К ним относятся хлебопечение, виноделие, пивоварение, приготовление кисломолочных продуктов и т. д. Наши предки не имели представления о сути процессов, лежащих в основе таких технологий, но в течение тысячелетий, используя метод проб и ошибок, совершенствовали их. Биологическая сущность этих процессов была выявлена лишь в XIX в. благодаря научным открытиям Л. Пастера. Его работы послужили основой для развития производств с использованием разнообразных видов микроорганизмов. В первой половине XX в. стали применять микробиологические процессы для промышленного получения ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.
    Успехи, достигнутые во второй половине XX в. в области цитологии, биохимии, молекулярной биологии и генетики, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что способствовало бурному развитию биотехнологии. Благодаря селекции высокопродуктивных штаммов микроорганиз­мов, эффективность биотехнологических процессов увеличилась в десятки и сотни раз.

    Биотехнология и её роль в практической деятельности человека

    Особенностью биотехнологии является то, что она сочетает в себе самые передовые достижения научно-технического прогресса с накопленным опытом прошлого, выражающимся в использовании природных источников для создания полезных для человека продуктов. Любой биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование полученных продуктов. Многоэтапность и сложность процесса обусловливает необходимость привлечения к его осуществлению самых разных специалистов: генетиков и молекулярных биологов, цитологов, биохимиков, вирусологов, микробиологов и физиологов, инженеров-технологов, конструкторов биотехнологического оборудования.

    Биотехнология в растениеводстве

    Метод культура тканей

    Всё шире на промышленной основе применяется метод вегетативного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножать новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал.

    Биотехнологии в животноводстве

    В последние годы повышается интерес к дождевым червям как к источнику животного белка для сбалансирования кормовых рационом животных, птиц, рыб, пушных зверей, а также белковой добавки, обладающей лечебно-профилактическими свойствами.
    Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов - бактерий, грибов, дрожжей, водорослей. Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Это имеет большое значение, поскольку 80% площадей сельскохо­зяйственных угодий в мире отводятся для производства корма скоту и птице.

    Клонирование

    Клонирование овцы Долли в 1996 году Яном Вильмутом и его коллегами в Рослинском институте в Эдинбурге вызвало бурную реакцию во всем мире. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием «перенос ядра», то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. Из 277 яйцеклеток с пересаженным ядром лишь одна развивалась в относительно здоровое животное. Этот метод размножения является «асексуальным», так как он не требует наличия представителя каждого пола, чтобы создать ребенка. Успех Вильмута стал международной сенсацией.
    В декабре 1998 года стало известно об удачных закончившихся попытках клонирования крупного рогатого скота, когда японцам И. Като, Т. Тани и сотр. удалось получить 8 здоровых телят после переноса 10 реконструированных эмбрионов в матку коров-реципиентов.

    Слайд №10

    Новые открытия
    в области медициныОсобенно широко успехи биотехнологии применяются в медицине. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны.
    Например, гормоны раньше, как правило, получали из органов и тканей животных. Даже для получения небольшого количества ле­чебного препарата требовалось много исходного материала. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог.
    Так, инсулин, гормон поджелудочной железы, - основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей. В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина. С помощью генной инженерии этот ген был введен в бактериальную клетку, которая в результате приобрела способность синтезировать инсулин человека.
    Помимо получения лечебных средств, биотехнология позволяет проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, ДНК/РНК -проб.
    С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

    Слайд №11

    Метод стволовых клеток: лечит или калечит?

    Японские ученые под руководством профессора Синья Яманака из Университета Киото впервые выделили стволовые клетки из человеческой кожи, предварительно внедрив в них набор определенных генов. По их мнению, это может послужить альтернативой клонированию и позволит создать препараты, сравнимые с теми, что получаются при клонировании человеческих эмбрионов. Американские ученые практически одновременно получили аналогичные результаты. Но это не означает, что через несколько месяцев можно будет полностью уйти от клонирования эмбрионов и восстанавливать работоспособность организма при помощи стволовых клеток, полученных из кожи пациента.
    Сначала специалистам придется убедиться в том, что «кожные» столовые клетки на самом деле так многофункциональны, как кажутся, что их можно без опасений за здоровье пациента вживлять в различные органы и что они при этом будут работать. Главное опасение – как бы такие клетки не представляли риска в отношении развития рака. Потому что главная опасность эмбриональных стволовых клеток заключается в том, что они генетически нестабильны и обладают способностью развиваться в некоторые опухоли после трансплантации в организм.

    Слайд №12

    Генная инженерия

    Приёмы генной инженерии позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределёнными признаками.
    Методы генной инженерии остаются ещё очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др.
    Селекция микроорганизмов является важнейшим направлением в биотехнологии.
    Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы.

    Слайд №13

    Трансгенные продукты:
    за и противВ мире уже зарегистрировано несколько десятков съедобных трансгенных растений. Это сорта сои, риса и сахарной свеклы, устойчивых к гербицидам; кукурузы, устойчивой к гербицидам и вредителям; картофеля, устойчивого к колорадскому жуку; кабачков, почти несодержащих косточек; помидоров, бананов и дынь с удлиненным сроком хранения; рапса и сои с измененным жирнокислотным составом; риса с повышенным содержанием витамина А.
    Генетически модернизированные источники могут встречаться в колбасе, сосисках, мясных консервах, пельменях, сыре, йогуртах, детском питании, кашах, шоколаде, конфетах мороженом.

    Слайд №14

    Генно-модифицированные продукты

    Перечень продуктов, где могут быть генетически измененные продукты: Рибофлавины Е 101, Е 101А, карамель Е 150, ксантан Е 415, лецитин Е 322, Е 153, Е160d, Е 161с, Е 308q, Е 471, Е 472f, Е 473, Е 475, Е 476b, Е 477, Е 479а, Е 570, Е 572,Е 573, Е 620, Е 621, Е 622, Е 623, Е 623, Е 624, Е 625.
    Генно - модифицированные продукты: шоколад Fruit Nut, Kit-kat, Milky Way, Twix; напитки: Nesquik, Coca-Cola, Sprite, Pepsi, чипсы Pringles, йогурт Danon.
    Генетически измененные продукты производят такие компании: Новартиc (Novartis), Монсанто (Monsanto)-новое название компании Фармация (Pharmacia), куда входит и Кока-кола, а также Нестле (Nestle), Данон (Danone), Хенц, Хипп, Юниливер (Uniliver), Юнайтид Бисквитс (United Biscuits), рестораны Мак-Доналдс (Mac-Donalds).
    В мире не зарегистрировано ни одного факта, что трансгенное растение нанесло вред человеку. Но бдительность терять не стоит. Пока не выяснено, не повлияют ли эти растения на потомство, не загрязнят ли окружающую среду.

    Слайд №15

    Перспективы развития биотехнологии

    Все шире на промышленной основе применяется метод вегетатив- ного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал.
    Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств. Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов. Из 1 т навоза получают до 500 м3 биогаза, что эквивалентно 350 л бензина, при этом качество навоза как удобрения улучшается.
    Биотехнологические разработки находят все большее применение в добыче и переработке полезных ископаемых.

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Биотехнология

    Микробиологический синтез Использование микроорганизмов для получения ряда веществ. Создают штаммы микроорганизмов, которые вырабатывают необходимые вещества в количествах, значительно превышающих потребности самих микроорганизмы в десятки и сотни раз.

    Примеры: Бактерии, способные накапливать уран, медь, кобальт, используют для извлечения металлов из сточных вод. С помощью бактерий, получают биогаз (смесь метана и углекислого газа), используемый для обогрева помещений. Удалось вывести микроорганизмы, синтезирующие аминокислоту лизин, которая не образуется в организме человека.

    Примеры: Для получения кормового белка используют дрожжи. Использование на корм скоту 1 т кормового белка экономит 5 – 8 т зерна. Добавка 1 т биомассы дрожжей в рацион птиц способствует получению дополнительно 1,5 – 2 т мяса или 25 – 35 тыс. яиц.

    Клеточная инженерия Выращивание клеток высших организмах на питательных средах. Выращивание безъядерных клеток. Пересадка ядер из одной клетки в другую. Выращивание из одной соматической клетки целого организма. Клонирование

    Клонирование Клонирование животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворенную яйцеклетку, у которой удалено собственное ядро.

    Клонирование Первые успешные опыты по клонированию животных были проведены в середине 1970-х годов английским эмбриологом Дж. Гордоном в экспериментах на амфибиях, когда замена ядра яйцеклетки на ядро из соматической клетки взрослой лягушки привела к появлению головастика.

    Клонирование Клонированное животное – овечка Долли

    Клеточная инженерия Гибридизация соматических клеток и создание межвидовых гибридов. Удается получить гибридные клетки организмов, неродственных между собой: Человека и мыши; Растений и животных; Раковых клеток, способных к неограниченному росту, и клеток крови – лимфоцитов. Возможно получение лекарства, повышающего устойчивость человека к инфекциям.

    Примеры: Благодаря методу гибридизации получили гибриды различных сортов картофеля, капусты, томатов. Из одной соматической клетки растения удается вырастить целый организм и таким образом размножить ценные сорта (например, женьшень). Получают клоны – генетические однородные клетки. Получение химерных организмов.

    Химерные мыши

    Химера овца - коза

    Генная инженерия Перестройка генотипов организмов: Создание действенных генов искусственным путем. Введение гена одного организма в генотип другого – получение трансгенных организмов.

    Введение в ДНК мыши гена роста крысы

    Результат

    Примеры: Ген, отвечающий за выработку инсулина у человека, ввели в генотип кишечной палочки. Эта бактерия вводится людям, больным сахарным диабетом.

    В генотип растения петуньи был введен ген, нарушающий образование и выработку пигмента. Так была создано растение с белыми цветками

    Примеры: Ученые пытаются ввести в генотип злаков ген бактерий, усваивающих азот из воздуха. Тогда станет возможным не вносить в почву азотные удобрения.


    По теме: методические разработки, презентации и конспекты

    Данный урок рассматривается первым по счету в разделе «Компьютерные презентации». На данном уроке учащиеся знакомятся с программой POWERPOINT, учатся изменять дизайн и макет слайдов....

    Презентация "Использование мультимедийных презентаций как универсального средства познания"

    В презентации "Использование мультимедийных презентаций как универсального средства познания" даются советы по оформлению и наполнению презентаций....

    Разработка урока и презентации "The Sightseeng Tours" London and Saint-Petersburg c презентацией

    Цели: развитие речевого умения (монологическое высказывание); совершенствование грамматических навыков чтения и говорения (прошедшее неопределенное время, определенный артикль) Задачи: учи...